

ECMO FOR ACUTE RESPIRATORY FAILURE

Robertas Stasys Samalavicius, MD, PhD

Head, Department of Cardiac and Thoracic Anaesthesia Vilnius University Hospital Santariskiu Klinikos

Disclosures

No relevant financial disclosures that would be of potential conflict of interest with this presentation

ORIGINAL ARTICLE

Incidence and Outcomes of Acute Lung Injury

Gordon D. Rubenfeld, M.D., Ellen Caldwell, M.S., Eve Peabody, B.A., Jim Weaver, R.R.T., Diane P. Martin, Ph.D., Margaret Neff, M.D., Eric J. Stern, M.D., and Leonard D. Hudson, M.D.

Table 1. Incidence of Acute Lung Injury and ARDS and Mortality from These	•
Conditions.*	

Variable	Acute Lung Injury	ARDS
Cases — no.	1,113	828
Crude incidence — no. per 100,000 person-yr	78.9	58.7
Age-adjusted incidence — no. per 100,000 person-yr†	86.2	64.0
Mortality (95% CI) — %	38.5 (34.9–42.2)	41.1 (36.7–45.4)
Estimated annual cases — no.†	190,600	141,500
Estimated annual deaths — no.†	74,500	59,000
Estimated annual hospital days — no.†	3,622,000	2,746,000
Estimated annual days in ICU — no.†	2,154,000	1,642,000

The American-European Consensus Conference on ARDS Definitions, Mechanisms, Relevant Outcomes, and Clinical Trial Coordination

		IDED CRITERIA FOR ACUTE LE RESPIRATORY DISTRESS SY		
	Timing	Oxygenation	Chest Radiograph	Pulmonary Artery Wedge Pressure
ALI criteria	Acute onset	Pa _{O₂} /Fı _{O₂} ≤ 300 mm Hg (regardless of PEEP level)	Bilateral infiltrates seen on frontal chest radiograph	18 mm Hg when measured or no clinical evidence of left atrial hypertension
ARDS criteria	Acute onset	Pa _{O₂} /Fi _{O₂} ≤ 200 mm Hg (regardless of PEEP level)	Bilateral infiltrates seen on frontal chest radiograph	18 mm Hg when measured or no clinical evidence of left atrial hypertension

Berlin definition of ARDS

	Acute respiratory distress syndrome (ARDS)							
Timing Within 1 week of a known clinical insult or new or worsering respiratory symptoms Chest imaging Bilateral opacities – not fully explained by effusions, lobar/lung collage, or noduls Respiratory failure not fully explained by cardiac failure of fluid overload Need objective assessment (eg., echocardiography) to exclude hybrostatic edema if no risk factor present								
Mild Moderate Severe								
Oxygenation ^b	200 <pao₂ <math="" fio₂="" ≤="">300 with PEEP or CPAP ≥5 cmH₂O^c</pao₂>	100 <pao₂ 200<br="" fio₂="" ≤="">with PEEP or CPAP ≥5 cmH₂O</pao₂>	$PaO_2/FiO_2 < 100$ with PEEP or CPAP ≥ 5 cmH ₂ O					

Issues regarding reliability and validity of ARDS definition of 1994 Empirical evaluation of meta-analysis of 4188 pts 3 exclusive categories of ARDS based on degree of hypoxemia Mortality: Mild – 27%, moderate – 32%, severe – 45%

Mortality Rates for Patients With Acute Lung Injury/ARDS Have Decreased Over Time*

Massimo Zambon, MD; and Jean-Louis Vincent, MD, PhD, FCCP

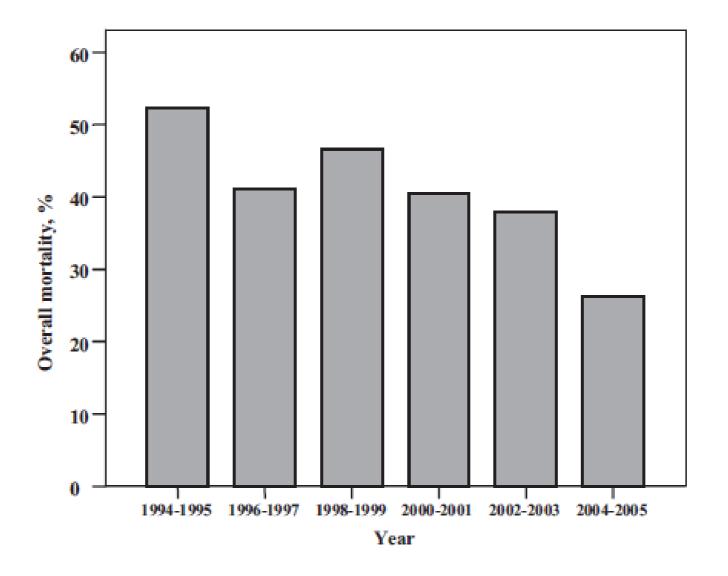


FIGURE 1. Variation in overall pooled mortality rates over time in the 72 ALI/ARDS studies.

May 4, 2000

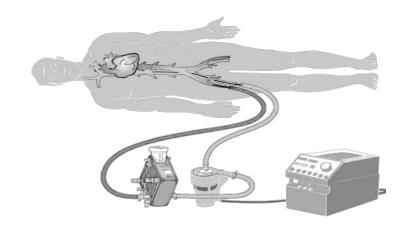
NUMBER 1

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME

THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK*

- Traditional ventilation treatment
 - Tidal volume 12 ml/kg
 - Pplateau < 50 cm H₂O
- Low tidal volume ventilation
 - Tidal volume 6 ml/kg
 - Pplateau < 30 cm H₂O

TABLE 4. MAIN OUTCOME VARIABLES.*

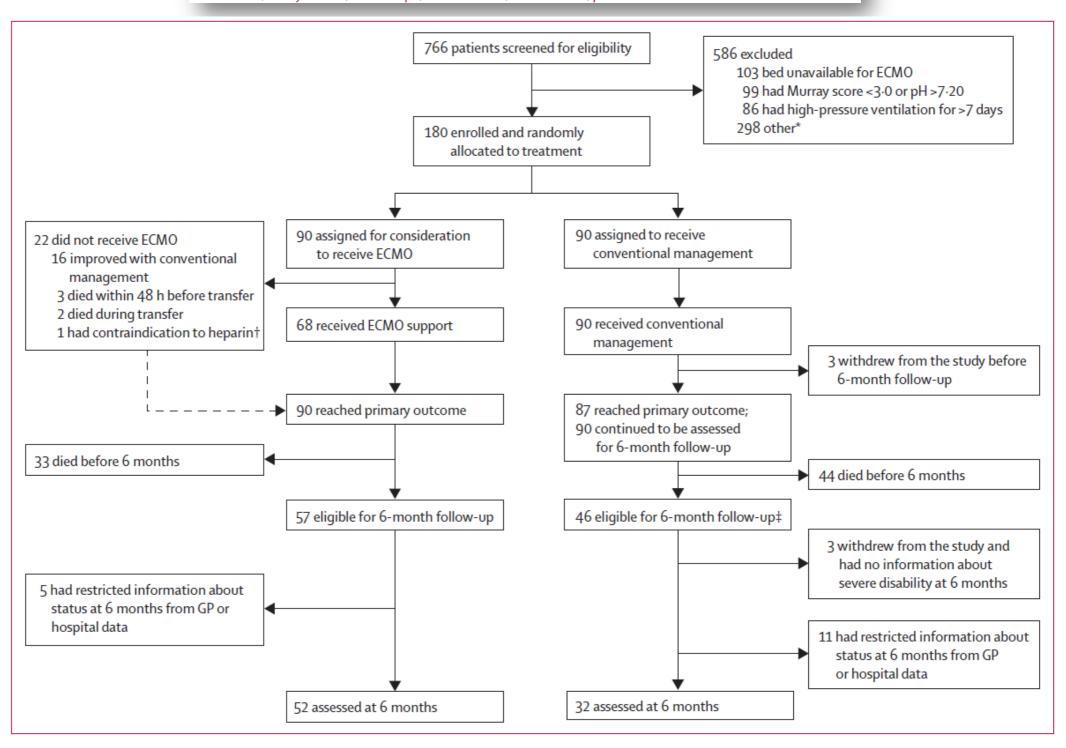

Variable	GROUP RECEIVING LOWER TIDAL VOLUMES	GROUP RECEIVING TRADITIONAL TIDAL VOLUMES	P Value
Death before discharge home and breathing without assistance (%)	31.0	39.8	0.007
Breathing without assistance by day 28 (%)	65.7	55.0	< 0.001
No. of ventilator-free days, days 1 to 28	12±11	10±11	0.007
Barotrauma, days 1 to 28 (%)	10	11	0.43
No. of days without failure of nonpulmonary organs or systems, days 1 to 28	15±11	12±11	0.006

ECMO for severe respiratory failure

Blood is drained and returned to the venous system, providing complete or partial support of the lungs, as long as the cardiac output is sufficient

Diseased lungs may heal while the potential injury of aggressive mechanical ventilation is avoided

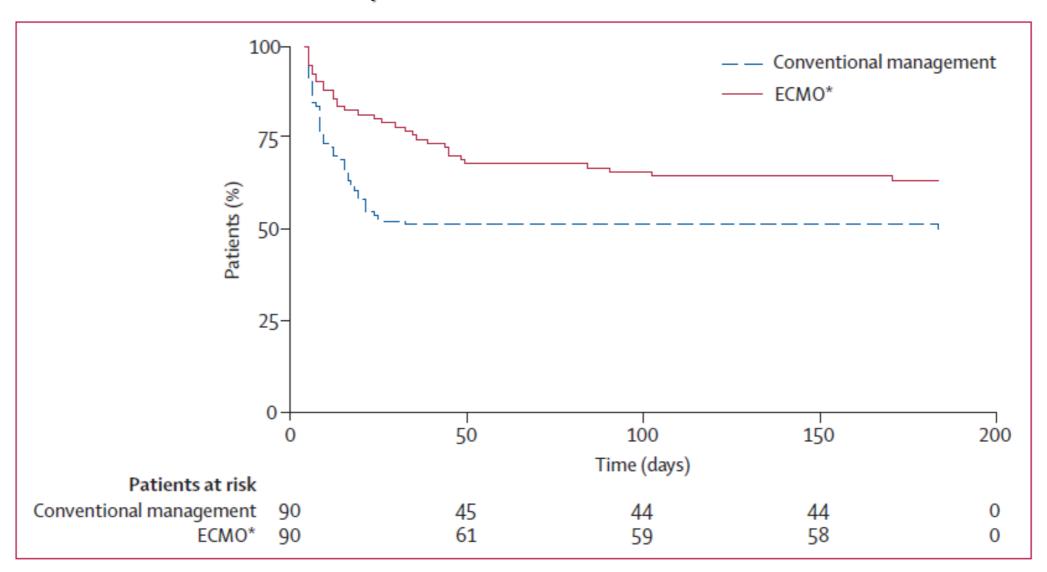
Reversable respiratory failure cause


Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial

Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

- UK based multicenter randomised trial
- Eligible pts 18-65 years old
- Severe respiratory failure (Murray score > 3.0, pH < 7.20), but potentially reversable.
- Exclusion criteria: high pressure (>30cm H2O peak respiratory prassure) or high FiO2 (>0.8) ventilation for more than 7 days, intracranial bleeding, contraindication to continuation of treatment.
- Primary outcome: death or disability at 6 month

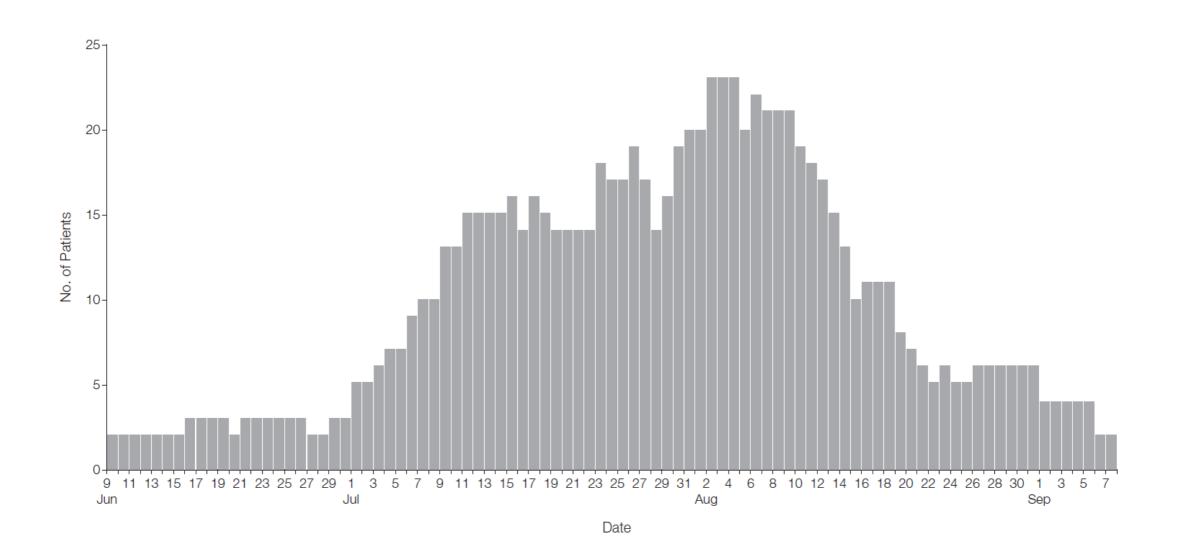
Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial


Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial

Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

Kaplan-Meier Survival Estimates



Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome

The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators

ECMO treated patients

Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome

The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators

Severity of ARDS before ECMO

2009 Influenza A(H1N1)

	2000 IIIIIdoi	124 / ((11111)	
Characteristics	Confirmed Infection (n = 53)	Suspected Infection (n = 15)	All Infections (N = 68)
Ventilation parameters, median (IQR) Lowest Pao ₂ /Fio ₂ ratio	55 (48-65)	57 (45-62)	56 (48-63)
Highest FIO ₂	1.0 (1.0-1.0)	1.0 (1.0-1.0)	1.0 (1.0-1.0)
Highest PEEP, cm H ₂ O	18 (15-20)	15 (14-18)	18 (15-20)
Highest peak airway pressure, cm H ₂ O	36 (34-40)	34 (29-36)	36 (33-38)
Lowest pH	7.2 (7.1-7.3)	7.2 (7.1-7.3)	7.2 (7.1-7.3)
Highest Paco ₂ , mm Hg	69 (54-86)	67 (61-73)	69 (54-83)
Highest tidal volume, mL/kg	5.6 (4.8-6.6)	5.7 (4.4-6.7)	5.6 (4.6-6.7)
Quadrants of radiograph infiltrate, No.	4 (4-4)	4 (4-4)	4 (4-4)
Acute lung injury score ^a	3.8 (3.3-4.0)	3.5 (3.3-3.8)	3.8 (3.5-4.0)
Pneumothorax pre-ECMO, No. (%)	9 (17)	1 (7)	10 (15)
Rescue ARDS therapies used, No. (%) Recruitment maneuver	30 (66)	8 (66)	38 (67)
Prone positioning	11 (22)	1 (8)	12 (20)
High-frequency oscillation	3 (6)	0	3 (5)
Nitric oxide	19 (38)	1 (8)	20 (32)
Prostacyclin	12 (23)	2 (15)	14 (22)

Abbreviations: ARDS, acute respiratory distress syndrome; ECMO, extracorporeal membrane oxygenation; FIO2, fraction of inspired oxygen; IQR, interquartile range; PEEP, positive end-expiratory pressure.

a Data were missing in 4 cases for Pao₂/Fio₂ ratio, in 4 cases for PEEP, in 17 cases for lung compliance, and in 5 cases

for quadrants of radiograph infiltrate.

Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome

The Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators

Patient outcomes

2009 Influenza A(H1N1)

		2000 11114011247 ((11111)				
Outcome Measure	Confirmed Infection (n = 53)	Suspected Infection (n = 15)	All Infections (N = 68)			
Length of stay, median (IQR), d	26 (16-35)	31 (15-38)	27 (16-37)			
Hospital	35 (24-45)	40 (27-54)	39 (23-47)			
Duration, median (IQR), d Mechanical ventilation	24 (13-31)	28 (13-34)	25 (13-34)			
ECMO support	10 (7-14)	11 (10-16)	10 (7-15)			
Survival at ICU discharge	38 (72)	10 (67)	48 (71)			
Still in ICU	4 (8)	2 (13)	6 (9)			
Survival at hospital discharge	22 (42)	10 (67)	32 (47)			
Still in hospital ^b	14 (26)	2 (13)	16 (24)			
Ambulant at hospital discharge ^c	21 (95)	10 (100)	31 (97)			
Sao ₂ on room air at hospital discharge, median (IQR), % ^c	97 (95-98)	97 (95-98)	97 (95-98)			
Discharge destination Died	11 (21)	3 (20)	14 (21)			
Home	18 (34)	4 (27)	22 (32)			
Other hospital	0	1 (7)	1 (1)			
Rehabilitation facility	4 (8)	5 (33)	9 (13)			
Cause of death ^d Hemorrhage	3 (27)	1 (33)	4 (29)			
Intracranial hemorrhage	4 (36)	2 (66)	6 (43)			
Infection	1 (9)	0	1 (7)			
Intractable respiratory failure	3 (27)	1 (33)	4 (29)			
						

ECMO indications

I. Patient Condition

A: Indications

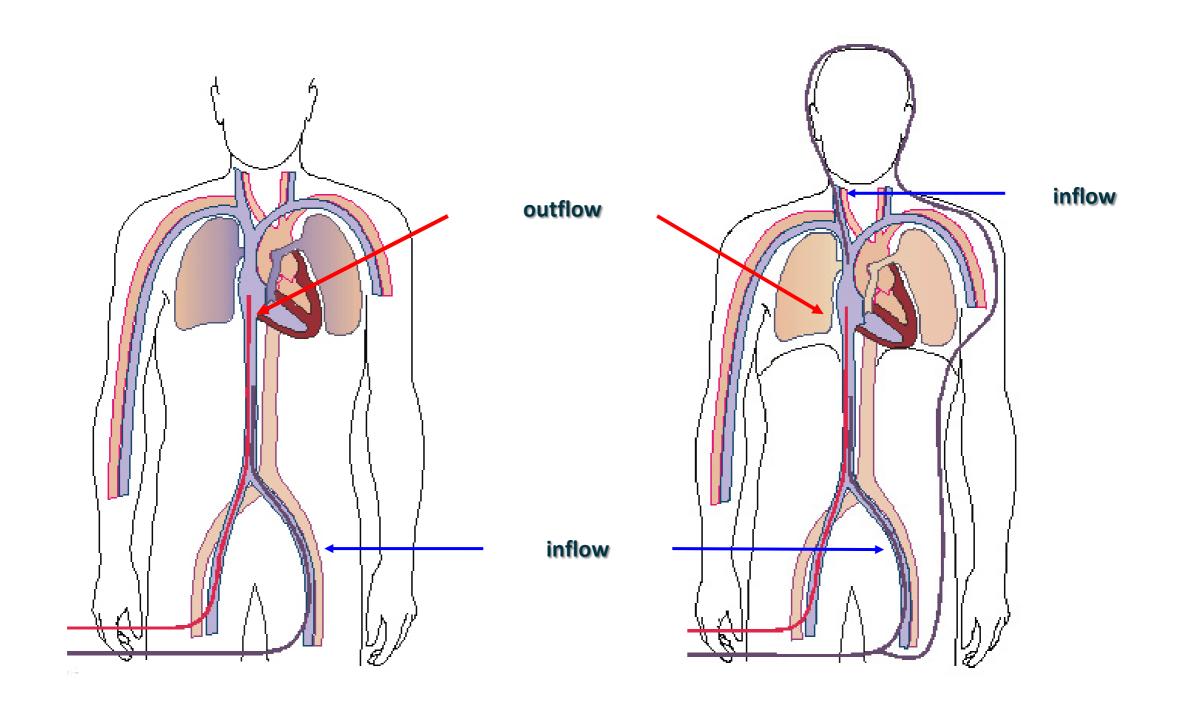
- 1. In hypoxic respiratory failure due to any cause (primary or secondary) ECLS should be considered when the risk of mortality is 50% or greater, and is indicated when the risk of mortality is 80% or greater.
 - a. 50% mortality risk is associated with a PaO2/FiO2 < 150 on FiO2 > 90% and/or Murray score 2-3.
 - b. 80% mortality risk is associated with a PaO2/FiO2 < 100 on FiO2> 90% and/or Murray score 3-4 despite optimal care for 6 hours or more.
- 2. CO2 retention on mechanical ventilation despite high Pplat (>30 cm H2O)
- **3.** Severe air leak syndromes
- **4.** Need for intubation in a patient on lung transplant list
- **5.** Immediate cardiac or respiratory collapse (PE, blocked airway, unresponsive to optimal care)

Acute lung injury score

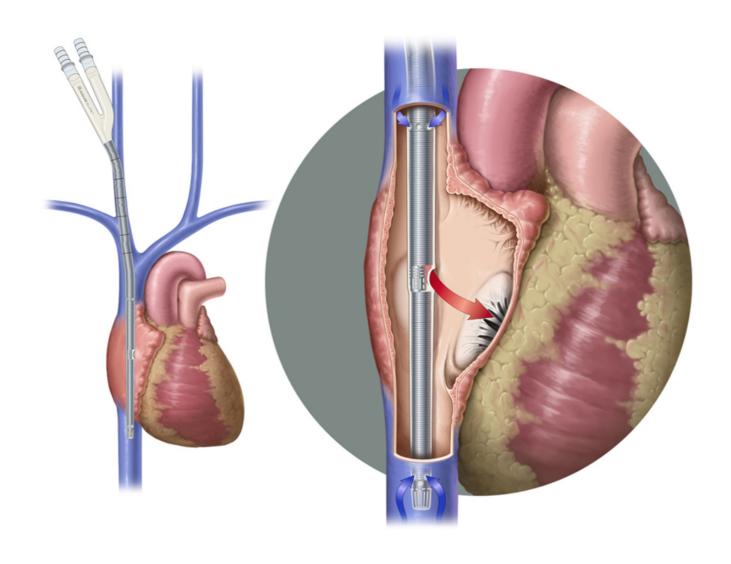
Murray score

= average score of all 4 parameters

Parameter / Score	0	1	2	3	4			
PaO2/FIO2 (On 100% Oxygen)	≥300mmHg ≥40kPa	225-299 30-40	175-224 23-30	100-174 13-23	<100 <13			
CXR	normal	1 point per quadrant infiltrated						
PEEP	≤5	6-8	9-11	12-14	≥15			
Compliance (ml/cmH2O)	≥80	60-79	40-59	20-39	≤19			

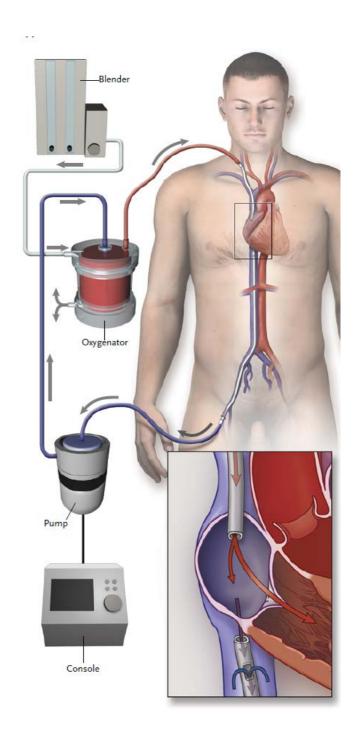

ECMO contraindications

B: Contraindications


There are no absolute contraindications to ECLS, as each patient is considered individually with respect to risks and benefits. There are conditions, however, that are associated with a poor outcome despite ECLS, and can be considered relative contraindications.

- 1. Mechanical ventilation at high settings (FiO2 > .9, P-plat > 30) for 7 days or more
- 2. Major pharmacologic immunosuppression (absolute neutrophil count <400/mm3)
- 3. CNS hemorrhage that is recent or expanding
- 4. Non recoverable co morbidity such as major CNS damage or terminal malignancy
- 5. Age: no specific age contraindication but consider increasing risk with increasing age

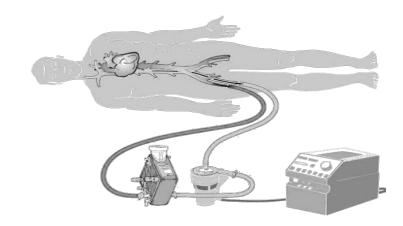
V-V ECMO



V-V ECMO

V-V ECMO

- Femoral drainage, jugular return
- Cannula size:
 - Drainage 21-29 Fr, 50-55 cm
 - Return 17 21 Fr, 18-23 cm
- Recirculation
- Blood flow 5-6 I/min (60% CO)

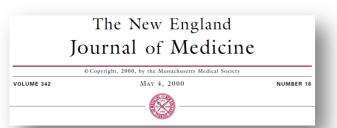


ECMO for severe respiratory failure

Not a treatment

Replaces pulmonary function – provides gas exchange to sustain life of a patient when native lung function cannot

Gives time to treat the patient and allow the lung to recover

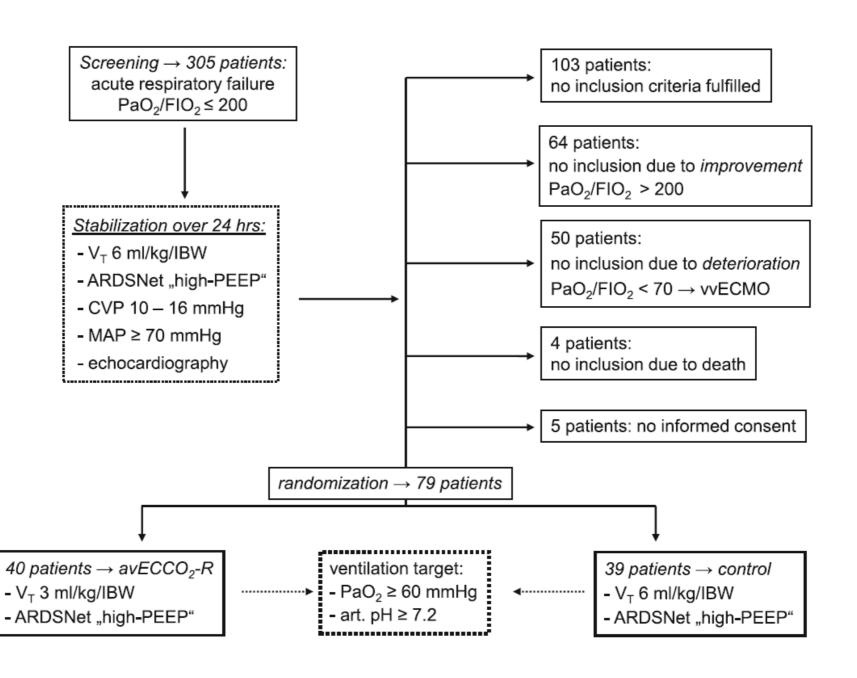


Background

No RCTs comparing mechanical lung ventilation strategies during ECMO

Mechanical ventilation on ECMO is guided by trials of conventional treatment of ARDS

VENTILATION WITH LOWER TIDAL VOLUMES AS COMPARED WITH TRADITIONAL TIDAL VOLUMES FOR ACUTE LUNG INJURY AND THE ACUTE RESPIRATORY DISTRESS SYNDROME


THE ACUTE RESPIRATORY DISTRESS SYNDROME NETWORK*

- Traditional ventilation treatment
 - Tidal volume 12 ml/kg
 - Pplateau < 50 cm H₂O
- Low tidal volume ventilation
 - Tidal volume 6 ml/kg
 - Pplateau < 30 cm H₂O

TABLE 4.	MAIN	OUTCOME	VARIABLES.*
----------	------	---------	-------------

VARIABLE	GROUP RECEIVING LOWER TIDAL VOLUMES	GROUP RECEIVING TRADITIONAL TIDAL VOLUMES	P VALUE
Death before discharge home and breathing without assistance (%)	31.0	39.8	0.007
Breathing without assistance by day 28 (%)	65.7	55.0	< 0.001
No. of ventilator-free days, days 1 to 28	12±11	10±11	0.007
Barotrauma, days 1 to 28 (%)	10	11	0.43
No. of days without failure of nonpulmonary organs or systems, days 1 to 28	15±11	12±11	0.006

Lower tidal volume strategy (\approx 3 ml/kg) combined with extracorporeal CO₂ removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS

Lower tidal volume strategy (\approx 3 ml/kg) combined with extracorporeal CO₂ removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS

- Ventilation with 3 ml/kg PBV combined with ECCO2-R was safe and feasable
- The use of ECCO2-R was associated with significant reduction in sedation
- The serum levels of pro-inflammatory mediators were significantly reduced
- Ventilation with 3 ml/kg PBV combined with ECCO2-R was not associated with reduction of MV (post hoc – pts with pO2/FiO2 < 150 had significantly shorter ventilation period)

ESTABLISHED IN 1812

JULY 22, 2004

VOL. 351 NO. 4

Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome

The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network*

Table 1. Summary	of Ventilator Proced	lures in the Lower- and	Higher-PEEP Groups.*
------------------	----------------------	-------------------------	----------------------

Procedure	Value													
Ventilator mode	Volume	assist	/contro	ol										
Tidal-volume goal	6 ml/kg	of pre	dicted l	oody w	eight									
Plateau-pressure goal	≤30 cm	of wat	er											
Ventilator rate and pH goal	6–35, a	djuste	d to ack	nieve ar	terial p	H ≥7.3	30 if possi	ble						
Inspiration:expiration time	1:1-1:3													
Oxygenation goal														
PaO ₂	55–80 r	mm Hg	3											
SpO ₂ Allowable combinations of PEEP at	88–95 % na FiO₂Ţ	6												
Lower-PEEP group														
FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	5	5	8	8	10	10	10	12	14	14	14	16	18	18-2
Higher-PEEP group (before pro	tocol change	ed to u	se high	ner leve	els of P	EEP)								
FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0	
PEEP	5	8	10	12	14	14	16	16	18	20	22	22	22–24	
Higher-PEEP group (after proto	col changed	to use	e highe	r levels	of PE	EP)								
FiO ₂	0.3	0.3	0.4	0.4	0.5	0.5	0.5-0.8	0.8	0.9	1.0				
PEEP	12	14	14	16	16	18	20	22	22	22–24				

ESTABLISHED IN 1812

JULY 22, 2004

VOL. 351 NO. 4

Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome

The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network*

TILL 4		<u> </u>	.,	
Table 4	Main	Outcome '	Variables:	
I a DIC T.	IVIAIII	Out Collic	Vallables.	

Table 4. Walli Outcome variables.			
Outcome	Lower-PEEP Group	Higher-PEEP Group	P Value
Death before discharge home (%)†			
Unadjusted Adjusted for differences in baseline covariates	24.9 27.5	27.5 25.1	0.48 0.47
Breathing without assistance by day 28 (%)	72.8	72.3	0.89
No. of ventilator-free days from day 1 to day 28‡	14.5±10.4	13.8±10.6	0.50
No. of days not spent in intensive care unit from day 1 to day 28	12.2±10.4	12.3±10.3	0.83
Barotrauma (%)§	10	11	0.51
No. of days without failure of circulatory, coagulation, hepatic, and renal organs from day 1 to day 28	16±11	16±11	0.82

ESTABLISHED IN 1812

JULY 22, 2004

VOL. 351 NO. 4

Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome

The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network*

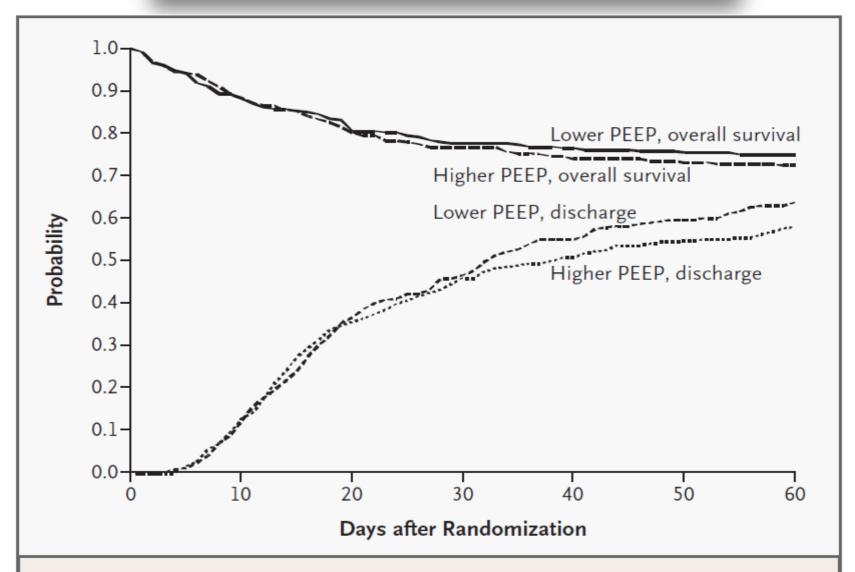
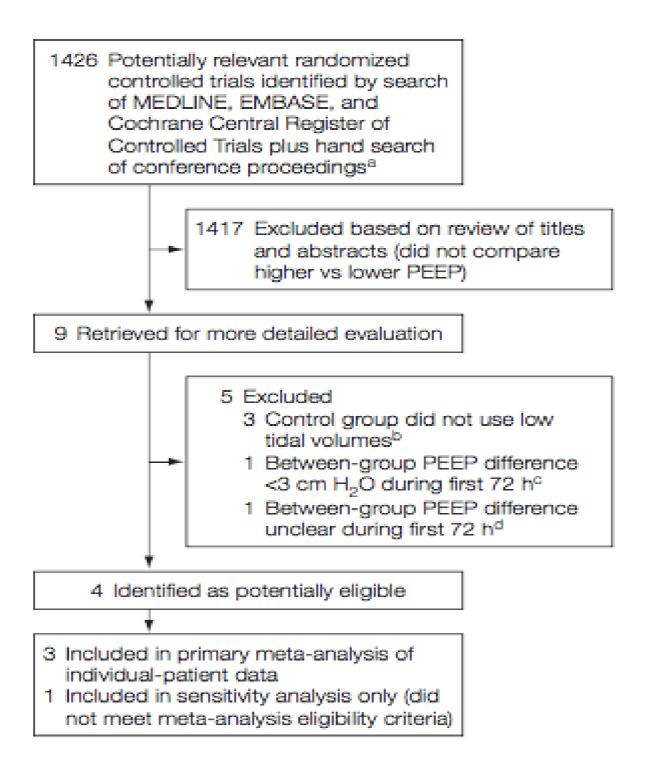



Figure 1. Probabilities of Survival and of Discharge Home While Breathing without Assistance, from the Day of Randomization (Day 0) to Day 60 among Patients with Acute Lung Injury and ARDS, According to Whether Patients Received Lower or Higher Levels of PEEP.

Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome

Systematic Review and Meta-analysis

Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome

Systematic Review and Meta-analysis

Table 4. Clinical Outcomes in All Patients and Stratified by Presence of ARDS at Baseline

		All Patients			With ARDS				Without ARDS			
	N	o. (%)			No. (%)				No. (%)			1
Outcomes	Higher PEEP (n = 1136	Lower PEEP i) (n = 1163)	Adjusted RR (95% CI) ^a	<i>P</i> Valu	Higher PEEP (n = 951)	Lower PEEP (n = 941)	Adjusted RR (95% CI) ^a	<i>P</i> Value	Higher PEEP n = 184)	Lower PEEP (n = 220)	Adjusted RR (95% CI) ^a	<i>P</i> Value
Death in hospital	374 (32.9)	409 (35.2)	0.94 (0.86 to 1.04)	.25	324 (34.1)	368 (39.1)	0.90 (0.81 to 1.00)	.049	50 (27.2)	44 (19.4)	1.37 (0.98 to 1.92)	.07
Death in ICU ^b	324 (28.5)	381 (32.8)	0.87 (0.78 to 0.97)	.01	288 (30.3)	344 (36.6)	0.85 (0.76 to 0.95)	.001	36 (19.6)	37 (16.8)	1.07 (0.74 to 1.55)	.71
Pneumothorax between day 1 and day 28°	87 (7.7)	75 (6.5)	1.19 (0.89 to 1.60)	.24	80 (8.4)	64 (6.8)	1.25 (0.94 to 1.68)	.13	7 (3.8)	11 (5.0)	0.72 (0.37 to 1.39)	.33
Death after pneumothorax	c 43 (3.8)	40 (3.5)	1.11 (0.73 to 1.69)	.63	41 (4.3)	35 (3.7)	1.20 (0.79 to 1.81)	.39	2 (1.1)	5 (2.3)	0.44 (0.08 to 2.35) ⁹	.34

ESTABLISHED IN 1812

JUNE 6, 2013

VOL. 368 NO. 23

Prone Positioning in Severe Acute Respiratory Distress Syndrome

Outcome	Supine Group (N = 229)	Prone Group (N = 237)	Hazard Ratio or Odds Ratio with the Prone Position (95% CI)	P Value
Mortality — no. (% [95% CI])				
At day 28				
Not adjusted	75 (32.8 [26.4-38.6])	38 (16.0 [11.3-20.7])	0.39 (0.25-0.63)	< 0.001
Adjusted for SOFA score†			0.42 (0.26-0.66)	<0.001
At day 90				
Not adjusted	94 (41.0 [34.6-47.4])	56 (23.6 [18.2-29.0])	0.44 (0.29-0.67)	< 0.001
Adjusted for SOFA score†			0.48 (0.32-0.72)	<0.001
Successful extubation at day 90 — no./total no. (% [95% CI])	145/223 (65.0 [58.7-71.3])	186/231 (80.5 [75.4–85.6])	0.45 (0.29-0.70)	<0.001
Time to successful extubation, assessed at day 90 — days				
Survivors	19±21	17±16		0.87
Nonsurvivors	16±11	18±14		
Length of ICU stay, assessed at day 90 — days				
Survivors	26±27	24±22		0.05
Nonsurvivors	18±15	21±20		
Ventilation-free days				
At day 28	10±10	14±9		<0.001
At day 90	43±38	57±34		<0.001
Pneumothorax — no. (% [95% CI])	13 (5.7 [3.9-7.5])	15 (6.3 [4.9-7.7])	0.89 (0.39-2.02)	0.85
Noninvasive ventilation — no./ total no. (% [95% CI])				
At day 28	10/212 (4.7 [1.9-7.5])	4/228 (1.8 [0.1-3.5])	0.36 (0.07-3.50)	0.11
At day 90	3/206 (1.5 [0.2-3.2])	4/225 (1.8 [0.1-3.5])	1.22 (0.23-6.97)	1.00
Tracheotomy — no./total no. (% [95% CI])				
At day 28	12/229 (5.2 [2.3-8.1])	9/237 (3.8 [1.4-6.0])	0.71 (0.27-1.86)	0.37
At day 90	18/223 (8.1 [4.5-11.7])	15/235 (6.4 [3.3-9.5])	0.78 (0.36-1.67)	0.59

ESTABLISHED IN 1812

JUNE 6, 2013

VOL. 368 NO. 23

Prone Positioning in Severe Acute Respiratory Distress Syndrome

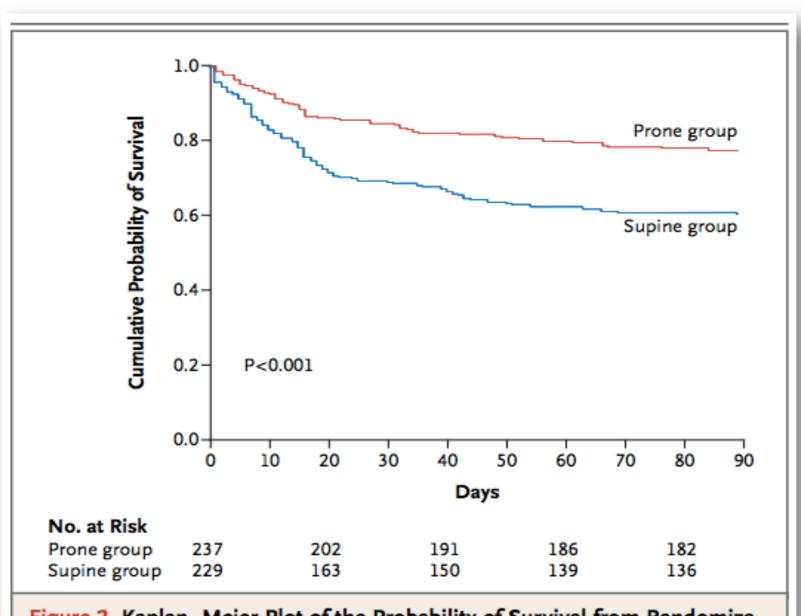


Figure 2. Kaplan-Meier Plot of the Probability of Survival from Randomization to Day 90.

Prone position during ECMO is safe and improves oxygenation

Valesca Kipping*1, Steffen Weber-Carstens*1, Christian Lojewski1, Paul Feldmann1, Antje Rydlewski1, Willehad Boemke1, Claudia Spies1, Marc Kastrup1, Udo X. Kaisers2, Klaus-D. Wernecke3, Maria Deja1

1st procedure				2 nd procedure			Multivariate nonparametric analysis of longitudinal data in a two-factorial design (MANOVA)		
Parameter median (IQR)	pre-PrP	in-PrP	post-PrP	pre-PrP	in-PrP	post-PrP	F _{Position}	F _{Procedure}	Interactions
PaO ₂ /FiO ₂ , mmHg	69 (53-155)	100 (76-114)	94 (76-112)	81 (62-128)	105 (83-219)	128 (69-237)	p = 0.002	p = 0.06	p = 0.62
PEEP, cmH ₂ O	16.5 (16-22.3)	16.5 (16-22.3)	17.5 (16.3-22.3)	18 (16.3-21.3)	17.5 (16-19.8)	17 (16-19.8)	p = 0.62	p = 0.41	p = 0.03
PIP, cmH ₂ O	35.5 (29.8-38.5)	35 (29.8-42)	34 (31.3-38.5)	37.5 (32.5-39.8)	36 (32.25-38)	35.5 (30.5-37.8)	p = 0.11	p = 0.63	p = 0.051
BF ECMO, I/min	3.4 (2.4-4.1)	3.4 (3-4.1)	3.4 (3-4.1)	3.7 (3-4.1)	3.8 (3.2-4.4)	3.6 (3.2-4.3)	p = 0.57	p = 0.14	p = 0.34
PaCO _s , mmHg	46 (43-51)	46 (41-51)	47 (40-48)	40 (36-47)	42 (37-45)	41 (39-46)	p = 0.84	p<0.001	p = 0.45

Prone position during ECMO is safe and improves oxygenation

Valesca Kipping*1, Steffen Weber-Carstens*1, Christian Lojewski1, Paul Feldmann1, Antje Rydlewski1, Willehad Boemke1, Claudia Spies1, Marc Kastrup1, Udo X. Kaisers2, Klaus-D. Wernecke3, Maria Deja1

Prone positioning in ECMO is feasible and safe (12 ECMO pts, 74 procedures of proning)

- No dislocations of intravascular catheters/cannulae, endotracheal tubes or chest tubes.
- Two procedures had to be interrupted

ORIGINAL ARTICLE

High-Frequency Oscillation for Acute Respiratory Distress Syndrome

Duncan Young, D.M., Sarah E. Lamb, D.Phil., Sanjoy Shah, M.D., Iain MacKenzie, M.D., William Tunnicliffe, M.Sc., Ranjit Lall, Ph.D., Kathy Rowan, D.Phil., and Brian H. Cuthbertson, M.D., for the OSCAR Study Group*

Figure 3. Kaplan-Meier Survival Estimates during the First 30 Study Days.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 28, 2013

VOL. 368 NO. 9

High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome

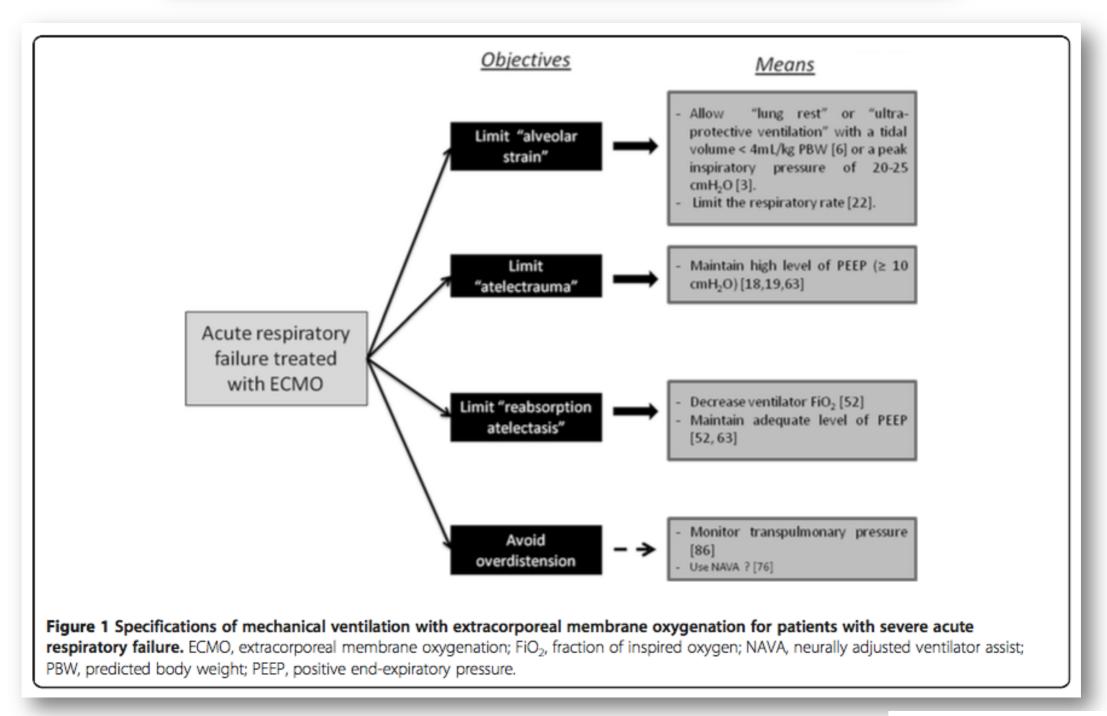
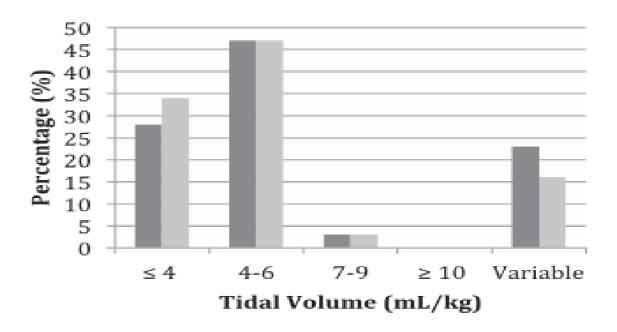

Niall D. Ferguson, M.D., Deborah J. Cook, M.D., Gordon H. Guyatt, M.D., Sangeeta Mehta, M.D., Lori Hand, R.R.T., Peggy Austin, C.C.R.A., Qi Zhou, Ph.D., Andrea Matte, R.R.T., Stephen D. Walter, Ph.D., Francois Lamontagne, M.D., John T. Granton, M.D., Yaseen M. Arabi, M.D., Alejandro C. Arroliga, M.D., Thomas E. Stewart, M.D., Arthur S. Slutsky, M.D., and Maureen O. Meade, M.D., for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group*

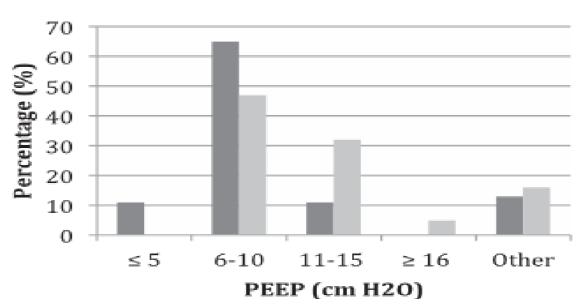
Table 4. Outcomes.				
Outcome	HFOV Group (N = 275)	Control Group (N = 273)	Relative Risk (95% CI)	P Value
Death in hospital — no. (%)	129 (47)	96 (35)	1.33 (1.09-1.64)	0.005
Death in intensive care unit — no. (%)	123 (45)	84 (31)	1.45 (1.17-1.81)	0.001
Death before day 28 — no. (%)	111 (40)	78 (29)	1.41 (1.12-1.79)	0.004
New barotrauma — no./total no. (%)*	46/256 (18)	34/259 (13)	1.37 (0.91–2.06)	0.13
New tracheostomy — no./total no. (%)†	59/273 (22)	66/267 (25)	0.87 (0.64-1.19)	0.39
Refractory hypoxemia — no. (%)	19 (7)	38 (14)	0.50 (0.29-0.84)	0.007
Death after refractory hypoxemia — no./total no. (%)	15/19 (79)	25/38 (66)	1.20 (0.87-1.66)	0.31
Refractory acidosis — no. (%)	9 (3)	8 (3)	1.12 (0.44-2.85)	0.82
Refractory barotrauma — no. (%)	2 (<1)	2 (<1)	0.99 (0.14-7.00)	0.99
Use of mechanical ventilation, among survivors — days				0.59
Median	11	10		
Interquartile range	7–19	6–18		
Stay in intensive care, among survivors — days				0.93
Median	15	14		
Interquartile range	9–25	9–26		
Length of hospitalization, among survivors — days				0.74
Median	30	25		
Interquartile range	16-45	15-41		

Mechanical ventilation during extracorporeal membrane oxygenation

Matthieu Schmidt^{1*}, Vincent Pellegrino², Alain Combes³, Carlos Scheinkestel², D Jamie Cooper^{1,2} and Carol Hodgson^{1,2}

Mechanical Ventilation during Extracorporeal Membrane Oxygenation An International Survey


Jonathan D. Marhong*, Teagan Telesnicki*, Laveena Munshi, Lorenzo Del Sorbo, Michael Detsky, and Eddy Fan Interdepartmental Division of Critical Care Medicine, and Department of Medicine, University of Toronto, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada


- ECMO survey ELSO reporting centers
- 27% had explicit mechanical ventilation protocol for VV ECMO patients
- "lung rest" 77%, "lung recruitment" 18%
- Controlled ventilation mode 62%, spontaneous breathing modes – 27%

Mechanical Ventilation during Extracorporeal Membrane Oxygenation An International Survey

Jonathan D. Marhong*, Teagan Telesnicki*, Laveena Munshi, Lorenzo Del Sorbo, Michael Detsky, and Eddy Fan

Interdepartmental Division of Critical Care Medicine, and Department of Medicine, University of Toronto, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada

Ventilatation strategies on ECMO

a) First 24 hours: moderate to heavy sedation.

Pressure controlled ventilation at 25/15, I:E 2:1, rate 5, FiO2 50%, FiN2 50% If initial PaCO2>50, increase sweep slowly to bring PaCO2 down slowly, 10-20 mmHg/hour

b) After 24-48 hours: (Stable hemodynamics off pressors, fluid balance underway, sepsis Rx underway) moderate to minimal sedation.

Pressure controlled vent at 20/10. I:E 2:1, rate 5 plus spontaneous breaths, FiO2 .2-.4, FiN2 60-80%. (rest settings)

c) After 48 hours Minimal to no sedation.

PCV as above or CPAP20 plus spontaneous breathing. Trach or extubate within 3-5 days

Ventilatation strategies on ECMO

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial

Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

Pressure control ventilation

- Peek inspiratory pressure 20-25 cmH2O
- PEEP between 10 − 15 cmH2O
- Respiratory rate 10 cycles/min
- FiO2 30%

ECLS Registry Report

International Summary
January, 2016

Extracorporeal Life Support Organization 2800 Plymouth Road Building 300, Room 303 Ann Arbor, MI 48109

Overall Outcomes						
	Total Patients	Survived ECLS		Survived to DC or Transfer		
Neonatal						
Respiratory	28,723	24,155	84%	21,274	74%	
Cardiac	6,269	3,885	62%	2,599	41%	
ECPR	1,254	806	64%	514	41%	
Pediatric						
Respiratory	7,210	4,787	66%	4,155	58%	
Cardiac	8,021	5,341	67%	4,067	51%	
ECPR	2,788	1,532	55%	1,144	41%	
Adult						
Respiratory	9,102	5,989	66%	5,254	58%	
Cardiac	7,850	4,394	56%	3,233	41%	
ECPR	2,379	948	40%	707	30%	
Total	73,596	51,837	70%	42,947	58%	

Predicting Survival after Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Failure

The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score

Matthieu Schmidt^{1,2}, Michael Bailey^{1,3}, Jayne Sheldrake³, Carol Hodgson^{1,3}, Cecile Aubron¹, Peter T. Rycus⁴, Carlos Scheinkestel³, D. Jamie Cooper^{1,3}, Daniel Brodie^{4,5}, Vincent Pellegrino^{1,3}, Alain Combes², and David Pilcher^{1,3}

- Retrospective review of 2355 ELSO registry adult pts with severe acute respiratory failure (2000-2012)
- Validated on 140 multicenter French pts used to create Preserve score
- Help clinicians to target patients most likely to get benefit from ECMO

Predicting Survival after Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Failure

The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score

Matthieu Schmidt^{1,2}, Michael Bailey^{1,3}, Jayne Sheldrake³, Carol Hodgson^{1,3}, Cecile Aubron¹, Peter T. Rycus⁴, Carlos Scheinkestel³, D. Jamie Cooper^{1,3}, Daniel Brodie^{4,5}, Vincent Pellegrino^{1,3}, Alain Combes², and David Pilcher^{1,3}

Table 3: The RESP Score at ECMO Initiation

Parameter	Score
Age, yr	
18 to 49	0
50 to 59	-2 -3 -2
≥60	-3
Immunocompromised status*	-2
Mechanical ventilation prior to initiation of ECMO	_
<48 h	3
48 h to 7 d	1
>7 d	0
Acute respiratory diagnosis group (select only one)	0
Viral pneumonia	3
Bacterial pneumonia Asthma	3
Trauma and burn	11
Aspiration pneumonitis	3 5 1
Other acute respiratory diagnoses	1
Nonrespiratory and chronic respiratory diagnoses	Ó
Central nervous system dysfunction [†]	_ 7
Acute associated (nonpulmonary) infection [‡]	-3
Neuromuscular blockade agents before ECMO	−3 1
Nitric oxide use before ECMO	-1
Bicarbonate infusion before ECMO	-2
Cardiac arrest before ECMO	-2
Pa _{CO₂} , mm Hg	
<75	0
≥75	-1
Peak inspiratory pressure, cm H ₂ O	_
<42	0
≥42 Talala	-1 20 to 45
Total score	−22 to 15

Predicting Survival after Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Failure

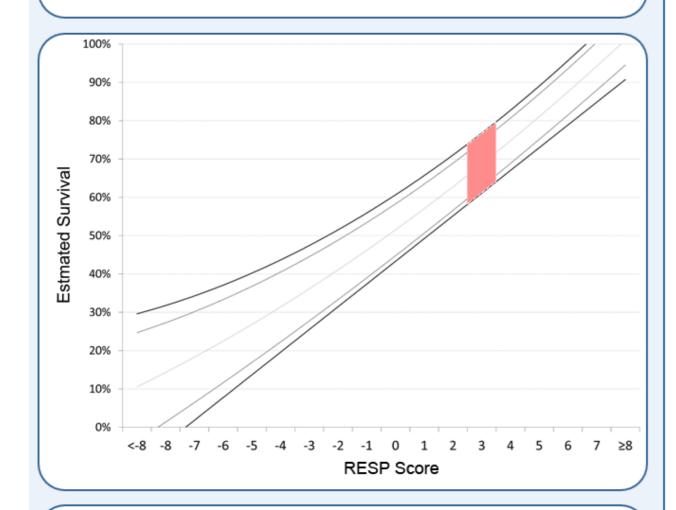
The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score

Matthieu Schmidt^{1,2}, Michael Bailey^{1,3}, Jayne Sheldrake³, Carol Hodgson^{1,3}, Cecile Aubron¹, Peter T. Rycus⁴, Carlos Scheinkestel³, D. Jamie Cooper^{1,3}, Daniel Brodie^{4,5}, Vincent Pellegrino^{1,3}, Alain Combes², and David Pilcher^{1,3}

Table 3: The RESP Score at ECMO Initiation

Parameter	Score
Age, yr 18 to 49	0

Hospital Survival by Risk Class


Total RESP Score	Risk Class	Survival
≥6 3 to 5 -1 to 2 -5 to -2 ≤-6	I II IV V	92% 76% 57% 33% 18%
Cardiac arrest before ECIVIO Pa _{CO₂} , mm Hg <75 ≥75 Peak inspiratory pressure, cm H₂ <42 ≥42 Total score	₂ O	0 -1 0 -1 -1 -22 to 15

The **RESP** Score

The RESP Score has been developed by <u>ELSO</u> and <u>The Department of Intensive Care at The Alfred Hospital, Melbourne</u>. It is designed to assist prediction of survival for adult patients undergoing Extra-Corporeal Membrane Oxygenation for respiratory failure. It should not be considered for patients who are not on ECMO or as substitute for clinical assessment.

For more information see:

Schmidt M, Bailey M, Sheldrake J, et al. Predicting Survival after ECMO for Severe Acute Respiratory Failure: the Respiratory ECMO Survival Prediction (RESP)-Score. Am J Respir Crit Care Med. 2014.

The patient's RESP Score is

3

Age (years:) 18-49 O 50-59 @ ≥60 O **Immunocompromised** Mechanical ventilation prior to initiation of ECMO <48 hours 48 hours - 7 days O >7 days O Acute Respiratory diagnosis group Viral pneumonia Bacterial pneumonia Asthma O Trauma/burn O Aspiration pneumonitis O Other acute respiratory diagnosis O Non-respiratory and chronic respiratory diagnoses O Central nervous system dysfunction Acute associated (non-pulmonary) infection Neuro-muscular blockade before ECMO Nitric oxide use before ECMO Bicarbonate infusion before ECMO Cardiac arrest before ECMO PaCO₂ ≥75 mmHg / 10kpa

Peak inspiratory pressure ≥42cmH2O

Summary

- Mortality for ARDS remains high despite improvement in patient care.
- No major impact on outcomes
- Need for effective therapeutic intervention
- ECMO for acute severe respiratory failure has positive impact on outcome
- Outcomes of severe respiratory failure patients treated with ECMO can be predicted.

Thank You For Your Attention!

